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DYNAMICS OF SATELLITE DISINTEGRATION

INTRODUCTION AND OVERVIEW

The importance of space debris and the ability to maintain ephemerides of this de-
bris grows increasingly significant each year. The steady growth in the known orbital
population means that the probability of a collision between an important spacecraft and
another object will continue to increase to the point of real danger. Because the orbital
lifetime can be quite long, this debris population will influence the near-earth environ-
ment for many years to come. The amount of known material in orbit about the earth
has already grown sufficiently large so that concern about collision between spacecraft
and debris is now being actively channeled into realistic investigations.

Space debris is created in many ways. Much of it is associated with the main space-
craft and consists of items such as spent rocket bodies, adapter rings, and ordinary nuts
and bolts. Occasionally, for various reasons, spacecraft disintegrate or explode in orbit,
and a single such catastrophic event can increase the debris population by the hundreds.
For example, over 3000 objects are being tracked by NORAD [1], and over half of this
observable population can be attributed to spacecraft breakups. It is interesting to note
that 1430 current radar-trackable fragments are the result of only ten orbital breakups [2].

Any investigation into the probability of spacecraft collisions runs immediately into
the problem of unknown population density, particularly as concerns a spacecraft disinte-
gration. This unknown density arises because not all potentially hazardous objects are of
sufficient size to be tracked by current systems. A further complication is added by the
accuracy with which objects in orbit can be tracked. This accuracy is in general insuffi-
cient for a satisfactory deterministic solution to the collision-probability problem. Never-
theless significant investigations have been made into this increasingly important area.

One of the early investigations into the motion of an orbital debris cloud was by
Ross [3] in 1961. He analyzed the orbital characteristics of a cloud of pellets following
their release from a spinning container initially in a circular orbit. A further analysis of
simulated spacecraft explosions was carried out in separate investigations by Fuss [4] and
Gabbard [1] in 1974. The purpose of the latter investigation was to characterize the
orbital fragment distribution in order to aid in cataloging the explosion debris. The pos-
sibility of collisions between spacecraft and orbital debris has been the subject of investi-
gations by McCarter [5] in 1972 and later by Brooks [2] et al. in 1974. The latter in-
vestigation indicates a collision probability for a 1000-day mission of up to 0.08 for
certain classes of earth orbiters. This investigation presumes the existence of a high
percentage of untrackable objects in space. These objects include those having cross
sections less than the approximate 0.01 square meter required to be seen by ground-
based radar [2].

Manuscript submitted November 12, 1975.
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DASENBROCK, KAUFMAN, AND HEARD

The reverse aspect of the problem is also of interest, namely, determining the origin
of an observed fragment cloud. Once a new collection of objects appears in orbit,
NAVSPASUR [6] routinely backdates the position of each individual object to determine
if any or all of the set converge to a common origin. Their procedure is to determine
the time that minimizes the size of the largest subcluster which lies within a predeter-
mined radius. The "size" is defined as the sum of the squares of the distances to each
fragment of this subset from the center of the cluster.

The primary purpose of the present investigation is to further study the dynamical
characteristics of an evolving fragment cloud in order to yield insight into both its future
evolution for purposes of collision probabilities and to determine how the dynamics might
be used to obtain the precise origin of the cloud. Specifically, satellite breakups are simu-
lated to study the characteristics of their evolving fragment clouds. These characteristics
are then used to determine how the time and place of a satellite explosion might be ac-
curately determined once its fragment cloud has been observed. Also the accuracy re-
quirements of the data are investigated to determine how much error may be tolerated
in the orbital elements and still yield an accurate breakup point.

There are two methods of attacking this overall problem. The first is the historical
numerical method based on knowledge of the orbits of individual fragments, and the
second is the application of the methods of statistical mechanics whereby the fragment
cloud is treated as an ensemble of noninteracting particles. This latter method associates
a continuum of particles with the observed population and thereby implicitly interpolates
the previously discussed unobserved fragments. Both of these approaches have been
adopted in this study.

By the numerical approach the current investigation determines the origin of the
fragment cloud based on the concept that all fragments of a single breakup continue
to pass through the breakup point in inertial space each successive revolution but at
different times. The approximate time of breakup is determined by backdating the
state of each fragment and plotting the running values of three functions to be defined
later. The three functions define the approximate breakup time. A more definitive
time as well as the location (latitude and longitude) of the breakup is then obtained
by noting that most of the orbital planes of the fragments will have a slight inclination
with respect to each other. However all of these planes intersect in a common line
passing through the breakup point. This line is preserved for all time in inertial space
except for perturbations. Using the approximate time already obtained, the effects
of perturbations are minimized and the common line is determined which then defines
a more precise time and location of the breakup.

The numerical procedure just described requires the orbits of individual fragments
and consequently necessitates a large amount of computation. An alternative approach
is to derive statistical characteristics of the ensemble without recourse to computation of
individual orbits. This is accomplished by applying the methods of statistical mechanics.
The structure of the cloud is calculated from its phase-space distribution function. This
distribution function satisfies a first-order, linear partial differential equation, and
Liouville's theorem states that it is an integral of the motion if the dynamical system is
conservative. An analytic expression for the spatial density of the fragments can be found
and used to determine the characteristics and the origin of the breakup.
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THE DETERMINATION OF THE BREAKUP POINT

Conceptually the determination of the breakup point of a cloud of fragments may
appear easy. One attempts to backdate the position vector of each fragment until all
occupy the same position simultaneously. In practice the situation is not so simple.
Usually many of the fragment pairs will not appear to pass within several tens or hun-
dreds of kilometers of each other. Also the time of closest approach for each pair is
usually different. These difficulties arise for the following reasons:

* The early-state estimates for each fragment may contain significant uncertainties
due to the small length of the data span over which the orbits were fit;

* The set of orbital elements may contain entries which are not part of the actual
breakup in question;

* For low-altitude fragments a significant drag term is sometimes computed during
the orbit determination process; that is, the coefficients n1 and n2 are determined in the
equation for mean motion:

M = MO + no(t -to) + n1 (t- to)2 + n2 (t - to) (1)

While the determination of n1 (n2 is usually not determined for short arcs) results in a
better fit over the data span, the extrapolation of equation (1) outside this domain back
to the breakup point may result in significant position errors.

The procedure to be described is designed to minimize the effects of these problems
and is guided by the following fundamental concepts:

* All fragments of a single orbital breakup occupy one point in space at one time
only, this being the breakup place and time;

* Except for perturbations all fragments continue to pass through this point in
inertial space each successive revolution but at different times.

A dual time-dependent and time-independent analysis is carried out. First an attempt
is made to see if all the fragments can be backdated simultaneously to an approximate
single point in time and space. Second an attempt is made to recover this point in iner-
tial space independent of time.

The Time-Dependent Procedure

The procedure used to determine the approximate time of breakup is as follows: the
state vectors of each fragment are simultaneously backdated, during which a running tabu-
lation of three arbitrary functions of these positions is plotted. These functions are de-
signed so as to peak in value whenever all or part of the fragment cloud has converged
to an approximate point.
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The first of the three functions is

n1
, Iri - rj2 + 62 (2)

where ri and rj are the position vectors to the ith and jth fragment respectively, n is the
total number of fragments, and 6 is a measure of the position uncertainty of the predicted
positions ri and rp. The uncertainty measure 6 is set to 10 kilometers and is included to re-
strain F1 from becoming infinite due to a single arbitrary close approach. Since the value
of F1 is insensitive to fragments which are not part of the breakup, the peaking of F1 is
a necessary but not sufficient condition that a breakup has occurred. F1 is useful to
determine the convergence of separate subclusters which may or may not occur at differ-
ent times.

The second of the three functions is

1
F 2 = . (3)

ri j r i

If the entire cluster size becomes small, the denominator in Eq. (3) will become small, re-
sulting in a large positive value for F2 . However, since F2 is greatly diminished in value
for any one Iri - ri I that does not become small, the maximization of F2 is a sufficient
condition to indicate a breakup.

The third of the three functions is

F3 = number of pairs such that I ri - rj I < d 1 , (4)

where d1 denotes an arbitrary distance (-100 km). F3 therefore gives a measure of the
number of close approaches within the distance d1 . The peaking of F3 like F1 is a
necessary condition of a breakup. F3 is used in conjunction with F1 to eliminate false
explosion times.

The Psuedo Time-Independent Determination

It is reasonable to assume that as a result of a satellite breakup most of the frag-
ments will be given an out-of-plane velocity increment with respect to the parent satellite.
The orbital inclinations of each fragment will thus be slightly different but will all inter-
sect in a common line passing through the breakup point (Fig. 1). Except for perturba-
tions this line is preserved in inertial space for all time. However due to oblateness the
orbital planes of the fragments regress at slightly different rates because of the minor
differences in their orbital periods and inclinations. Therefore, if the approximate time
of the explosion is known and the orbital-plane intersections are calculated for each frag-
ment pair, the explosion point in inertial space should be determined. Actually the line
of intersections together with the orbital radius define two points in space. But it will
seem later that although the out-of-plane component of the position distribution is zero
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each half revolution from the breakup point, the radial component becomes zero each
whole revolution. Therefore in principle the extraneous point can be eliminated.

Let ri(t) and vi(t) be the position and velocity vectors at time t of the ith fragment
among n fragments. At any time t calculate the normal to the orbit plane:

hi(t) = ri X vi, i= 1, 2, ... , n . (5)

Then calculate the line of intersection for each pair of orbital planes (Fig. 1):

N' = hi X h j1 ,,N' h X h. 1, 2, ..., n . (6)

However each N;li is expressed in inertial coordinates referenced to the true equator and
equinox of date. The transformation to earth-fixed (rotating) coordinates is accomplished
by

Nx, cos y sin My 0
NY = sin y cos y 0 Ni'j X

N, 0 0 1

(7)

where -y is the Greenwich hour angle, which is computed from the time given by the
time-dependent analysis. The latitude <p and longitude X of the intersection point are
then given by

iJ
i~kj

= sin 1 Nz (8)

Z ORBIT OF i th
| FRAGMENT

Fig. 1-Common intersection of
orbit planes
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and

= tan1 ) (9)

Since many of the orbital-plane combinations will be nearly coplanar, their intersection
lines will thus be poorly defined. Therefore only those plane intersections defining an
angle greater than 1/10 degree will be considered physically meaningful. Any two frag-
ments having a relative out-of-plane velocity of at least 12 m/s at the point of disintegra-
tion will meet this criterion.

The Analytical Prediction Scheme

The data on the individual fragments is provided in the form of mean elements by both
NORAD and NAVSPASUR. For accuracy it is advantageous to use the same orbit-pre-
diction process as was employed in the original differential corrections. However in the
interest of computational efficiency a suitable simplication of these procedures is usually
sufficient to obtain a prediction accuracy of 10 km over 5 days. This is the accuracy re-
quirement that was imposed for this study.

The orbital parameters of each fragment obtained by NAVSPASUR were fitted to
the observations by a modified Brouwer scheme [6]. Although the use of this procedure
would yield the most accurate state prediction over the data span, a simplified procedure
(NAVSPASUR one-line format) was used here for computational efficiency [6]. Essen-
tially the method includes only the long-period and secular terms involving J 2 , with the
short-period terms being omitted. Using this method a 15-kilometer position accuracy can
be obtained up to 10 days from epoch.

The data supplied from NORAD was backdated using a similar scheme [7] and is
mainly a simplification of the analytical series produced by Arsenault, Chaffee, and
Kuhlman [8]. This series contains all the long-period and secular terms involving J2

and J3 as well as all the short-period terms due to J 2 not containing eccentricity as a
factor. It represents a compromise between computational accuracy and efficiency.

SIMULATED RESULTS

It is of interest to determine the minimum accuracy necessary of the initial states to
achieve a successful prediction of the breakup point. Therefore satellite disintegrations
were simulated to determine the effects of noisy data in calculating a breakup point.

In an example of the simulations it was assumed that at the time of breakup the
parent satellite was in the orbit having the following Keplerian elements:

sernimajor axis a = 7000.0 km,
eccentricity e = 0.0,
inclination i = 45.0 degrees,
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nodal angle Q2 = 0.0 degrees,
argument of perigee w = 0.0 degrees, and

mean anomaly M = 0.0 degrees.

Each component of velocity was given a small velocity increment of zero mean and 10 m/s
standard deviation. Then each fragment was propagated to a random epoch up to 10 days
after the breakup. Noise was again added to the states, and an attempt to recover the ex-
plosion point was carried out. The computation of the breakup point was made for three
separate levels of state uncertainties.

Figure 2a shows the results of the time-dependent procedure for a state uncertainty
of zero mean and 0.05% standard deviation which is superimposed on the state vectors of
each fragment. Figure 2b shows the results for an uncertainty of 0.09%. For this partic-
ular simulated breakup it is apparent that the breakup point can be recovered for an un-
certainty of 0.05% and possibly 0.09%, although in the latter case F3 is at a maximum
one revolution past the explosion time. It is apparent from Fig. 2c that an uncertainty
of 0.16% is definitely beyond the maximum that can be tolerated. Naturally when the
breakup is more violent (explosion velocities ; 100 m/s), a proportionally higher uncertainty
can be tolerated. Figure 3 shows the time-independent analysis for the three uncertainties.
The line of intersections for the individual fragment pairs is shown only for those having
a mutual intersection angle of 0.1 degree or more. Figure 3c shows the results for the
highest noise level. The spread appears to be about 4 to 5 degrees in latitude. It
appears therefore that the approximate position of breakup can be recovered by the
time-independent analysis even though the time-dependent analysis fails (Fig. 2c).

In the simulation no attempt was made to conserve the momentum of the explo-
sion about the parent satellite, since in practice only the larger fragments can be ob-
served after a breakup. Also, momentum is not conserved if the breakup is the result
of a collision with an external device.

RECONSTRUCTION OF ACTUAL BREAKUPS

Data were received from NORAD on the ITOS-F rocket-body breakup. which was
launched November 6, 1973, into a 1500-km-altitude orbit and disintegrated during
late December 1973. The data on the resulting fragments were cataloged within sev-
eral days of the breakup. The orbits of 12 fragments were analyzed, and the results
are shown in Fig. 4. Time is increasing to the left, and the functions are shown peak-
ing at nearly the same point, indicating the approximate time of breakup. The peaks
are quite broad, which shows an uncertainty of approximately a quarter orbit on either
side of the maxima. The results of the time-independent analysis are shown in Fig. 5,
with the latitudes and longitudes of the most significant plane intersections being indi-
cated. It is apparent that the breakup occurred between 300S and 450S latitude near
180'W longitude, and correlation of these results with those of Fig. 4 indicates the time
of the breakup to be at 0908Z ± 3 min on December 28, 1973.

The Cosmos-699 disintegration which occurred in mid-April 1975 proved to be an-
other interesting case for study. The orbits of 33 fragments were observed and cataloged
by NAVSPASUR [6] during the several days following the event. This apparently was a
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(a)-0.05% standard deviation

(b)-0.09% standard deviation

(c)-0.16% standard deviation

Fig. 2-Results of the time-dependent
data and state uncertainties with zero
deviations

procedure using simulated
mean and various standard
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Fig. 4-Time-dependent analysis of ITOS-F rocket-body fragments

28°0

_I72 _~~~~

I 36 0S I_ I__

___ 40'S

1760E 180oEt ____ -120 .1-Y

Fig. 5-Time-independent analysis of
ITOS-F rocket-body fragments

rather slow breakup. The velocity dispersion of the fragments appeared to be no more
than 10 to 20 m/sec with respect to the cluster center, making a precise determination
of the breakup time difficult. The results of the time-dependent study are shown in
Fig. 6. F1 shows a rather sharp peak, indicating at least a subset of the 33 fragments
could be backdated to within a small cluster. F2 and F3 both show a rather broad peak
due to the rather slow convergence of the total cluster. The three functions all indicate
the approximate time of the breakup to be at 2147Z ± 5 min on April 17, 1975. The
time-independent analysis is shown in Fig. 7. Due to the rather small velocity dispersion,
few of the plane-intersection angles were greater than the desired 0.1 degree. Neverthe-
less this analysis shows the breakup point to be between 50N, 830W and 0N, 810W
geocentric latitude and longitude. This confirms the results of the time-dependent
analysis.

A rather violent breakup of the ERTS-I rocket body occurred on May 22, 1975,
with over 100 fragments being cataloged by NORAD within several days of the breakup.
The results of the time-dependent analysis is shown in Fig. 8. Due to the rather sharp
peaking of both F1 and F2 the time of breakup is determined to within several minutes
by this time-dependent procedure alone. The place and time of breakup are more
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or

Fig. 6-Time-dependent analysis of COSMOS-699 fragments

Fig. 7-Time-independent analysis of
COSMOS-699 fragments
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Fig. 8-Time-dependent analysis of ERTS-I rocket-body fragments
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precisely determined by the time-independent procedure (Fig. 9), since the orbit-plane
intersection angles are nearly 2 degrees for some fragment pairs. In Fig. 9 the spread in
position is less than 0.5 degree. The location of the breakup is over 33.3OS geocentric
latitude and 45.1 0E longitude at 1827Z on May 22, 1975.

330L1 

33'2S

33'3S 

33?4S

44~E 4~OE45 01E 45 E 45?3E ___

Fig. 9-Time-independent analysis
of ERTS-I rocket-body fragments

The dispersion of the ERTS-I rocket-body fragment cloud from the time of breakup
to 1/2 orbit later is shown in Fig. 10. Figures 10a through 10f show the evolution of
the radial and downtrack component of the cloud. For these figures a simultaneous elon-
gation and rotation of the fragment cloud is apparent. Figures 10g through 101 show the
radial and crosstrack components of the cloud over the same time span. Note that one-
half revolution from the breakup point the crosstrack component is nearly zero.

APPLICATION OF STATISTICAL MECHANICS

As mentioned in the Introduction, there are at least two methods for studying satellite
breakups. The first, and historically the most common, is the study of trajectories of
individual particles. The second method concentrates from the beginning on the statisti-
cal properties of the ensemble and seeks to derive them without recourse to large number
of individual trajectories.

We shall investigate the second approach and apply methods of statistical mechanics
to the problem. The technique we shall use is called the continuum approach in stellar
dynamics [9]. However, the present problem is vastly less complicated than the problems
of stellar dynamics, because we can ignore mutual interactions of the particles. The
mathematical import is that we need appeal only to the well-developed theory of linear,
first-order partial differential equations to obtain a solution.

The dispersion problem has two aspects, which we shall refer to as the direct prob-
lem and the inverse problem. In the direct problem one seeks to determine the fate of
the ensemble from a priori knowledge of its origin. An example of the direct problem

12
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would be the simulation of a satellite explosion. In the inverse problem one seeks to
determine conditions at the origin from observations of the ensemble at a later time.
The preceding studies of estimated satellite breakup times (involving Figs. 2, 4, 6, and
8) and positions at breakup (involving Figs. 3, 5, 7, and 9) are examples of the inverse
problem.

Aside from the large literature on related problems in stellar dynamics and plasma
physics, little attention has been given to the problem addressed here. A notable excep-
tion is an unpublished preprint by Langebartel [10], who applies the Liouville equation
to the dispersion of particles in Hamiltonian systems and shows the utility of introducing
generalized functions into the analysis. The four following subsections generalize and
extend Langebartel's preprint (and have been submitted as a paper to Astrophysics and
Space Science [11] ). A good physical explanation of the dispersion of particles from
orbiting, rotating artificial satellites is available in a paper by Ross [3].

Mathematical Formulation and Formal Solution

Consider an ensemble of non-interacting particles moving in a common force field
such that the equations of motion for an individual particle are

q = X(q, p, t) (10a)

and

p = Y(q, p, t) (lOb)

where the n-dimensional vectors q and p are the coordinates and momenta respectively.
Let f(q, p, t) be the phase-space density function for the ensemble such that a volume
dqdp at point q, p contains dN particles at time t, where

dN = f(q, p, t) dqdp .

According to Chandrasekhar [12] the distribution function f satisfies the first-order,
linear partial differential equation

at + E [jqj(fXi) + api([Yi)I = 0 (11)

if no source of particles is present. Equation (11) may be written

D -= fA, (12)
Dt

where D/Dt denotes the "Stokes derivative"

D/Dt = a/at + X - vq + Y * Vp

and

13
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(a)-At the time of breakup
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Fig. 10-Fragment positions of ERTS-I rocket body
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(g)-At the time of breakup
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Fig. 10-Fragment positions of ERTS-I rocket body-Continued
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A E aXi + a YiJ

Given a particle at point q, p in phase space at time t, let Q0 (q, p, t), P0 (q, p, t)
denote its position at time t = 0. Similarly, for a particle at point q, p at time t = 0,
let Q(q, p, t), P(q, p, t) denote its position at time t. These functions are inverses of
one another in the sense that

Q0 [Q(q, p, t), P(q, p, t), t] = q, P0 [Q(q, p, t), P(q, p, t), t] = p (13a)

and

Q[Q 0 (q, p, t), P0 (q, p, t), t] = q, P[Q0 (q, p, t), P0 (q, p, t), t] = p. (13b)

The formal solution of (12) which satisfies the initial condition

f(q, p, 0) = F(q, p) (14)

may now be written as

f(q, p, t) = F[Q 0 (q, p, t), P0(q, p, t)] eFr(q P, t), (15)

where

t

r(q, p, t) =JA [q(t), p(t), t] dt (16)
0

and it is understood that the integral (16) is to be evaluated along the trajectory passing
through q, p at time t.

The spatial density p(q, t) is a fundamental descriptor of the ensemble of particles.
It is obtained by integrating f over all momenta:

p(q, t) = f f(q, p, t)dp. (17)

The spatial density specifies the apparent shape and dispersion of the particle cloud at
any time. The quadrature (17) is easily performed formally if the particles emanate from
a common point.

To describe dispersion from a common point q*, we may use the initial condition

F(q, p) = 6(q - q*)G(p), (18)

where 6 denotes the Dirac delta function and G is an arbitrary function which specifies
the initial distribution of momenta.

16
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We will evaluate the integral (17) by applying two theorems from the calculus of
6 functions [13]:

6(X-X 0 ) = 6(X1 -Xl, 0 )6(x 2 -X 2 ,0 ) ... 6 (Xn -X, 0 )

f6L[4(x)] [4L2(x)] ... 6[iPn(x)]F(x) dx = I IF(x*),

(Theorem I)

(Theorem II)

where x* is determined from the equations

i(x *) = 0, i = 1, ..., n,

and J is the Jacobian determinant

= N1, ;2, -- 0n
X(i1, X2, ..., xn)

evaluated at x = x*. Theorem I relates a multidimensional 6 function to the product of
one-dimensional 6 functions, and theorem II specifies the behavior of 6 functions under
a change of variable.

We substitute (18) and (15) into (17) to obtain

p(q, t) = fb[Qo(q, p, t) - q*]G[PO(q, p, t)]ePr(q P, t)dp. (19)

According to Theorems I and II we then obtain

p(q, t) = I G[Po(q, p*, t)]e r(q, P*, t) (20)

where p* is the solution of the equation

Q 0 (q, p*, t) = q*

= a(Qo,1 ... Q0 ,n)

a(Pil ... ~Pn)

(21)

(22)

Thus the calculation of the evolution of spatial density is reduced to the evaluation of a
Jacobian determinant (22) and the solution of an equation (21) which is usually transcen-
dental. The determinant involved is that of a submatrix of the matrizant of the variational

17
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equations associated with the system (10) [14]. The matrizants for many dynamical
systems are available in the literature. For example the matrizant for two-dimensional
Keplerian motion is available in Deprit and Deprit-Bartholeme [15] and for three-dimensional
Keplerian motion in Goodyear [16]; and methods for calculating matrizants for per-
turbed Keplerian motion are discussed by Danby [17] and Goodyear [18]. Equation
(21) is also a generalization of a problem with a long tradition in celestial mechanics.
For Keplerian motion it becomes a statement of Lambert's problem.

Liouville's theorem [19] asserts that A(q, p, t) 0 for Hamiltonian dynamical sys-
tems. Hamiltonian systems then admit the simplification of setting to unity the exponen-
tial factor in equation (20). It is possible that A(q, p, t) = 0 for a non-Hamiltonian sys-
tem also.

The formal solution, as it stands, reveals little information about the physical behav-
ior of dispersing ensembles of particles. To obtain more details and hence more physical
insight, we now turn to specific systems. Linear systems admit a compact, explicit solu-
tion and will be treated in the next subsection. The subsequent subsection treats an
especially important linear case: the case of small departures from circular orbits in an
axially symmetric gravitational field.

The Variational Equations

Oftentimes dispersing systems have the property that the relative velocities of the
particles are small in comparison with the total velocity of a reference particle at the
time of disintegration. In these cases, one can profitably use the variational equations
of the dynamical system to study the initial dispersion. The mathematics is considerably
simplified in this case, because the equations become linear and, as mentioned, the ma-
trizants for several important dynamical systems are available in the literature.

We now consider q, p to be departures from a reference solution of system (10).
The equations of motion for q, p are the variational equations

\ q\
. ) =A ) ' (23)

P P/

where

/All A12
A = ,

A21 1 A 2 2 /

which is matrix of partial derivatives

ax ax ay ay
All aq A 1 2 ap A 2 1 -qy andA 22 a-

to be evaluated on the reference solution.

18
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The solution of the variational equations involves the matrizant

( )

where

aq v= aq X apap
aqo ap0 aqo apo

and may be written

/q ) q0

P) (25)

where q0 and p0 are the initial values. If we adopt the notation that for any matrix M(t)

M_(t) = M(-t),

then a fundamental property of matrizants may be written [14]

o-1 = .s(26)

Equations (25) and (26) imply

() a )z 2P)
and the propagator functions Q0 and P0 of equations (13) become

Q0(q, p, t) = U q + V-p (27)

and

P0(q, p, t) = W q + Y p. (28)

The Jacobian determinant (22) becomes

J = det V, (29)

and equation (21) becomes the linear equation

Uq + V p* = q*, (30)

whose solution is

19
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p* = V 1 (q* - U~q). (31)

The exponential factor appearing in equation (20) may be simplified by appealing
to general properties of variational equations. Differentiating the determinant of (D, we
obtain [20]

dt = L (i p)'(32)

where

L = det 4' .

However, according to (23), (32) may be written

dL
d = LA (33)

or

dtd -(9n L) = A . (34)

Therefore we obtain the following replacement for the exponential factor:

e-fAdt = L(O)/L(t) . (35)

When the preceding results are assembled, spatial density function for this case may
be expressed

p (q, t dt(F0 G [(W- - YV 1' U.)q + Y..Vu q*] (36)
[det 4(t)] I detV I (36)

Here we should recall that q now represents the departure from a reference solution of
the original system (10) and that for a Hamiltonian system det ( -1 by Liouville's
theorem.

To recapitulate, we have found that the spatial density function associated with
small departures from a reference solution is constructed entirely from the matrizant of
the system. Our next step, taken in the next subsection, is to exhibit p(q, t) for the
specific case of dispersion from a circular orbit and to give an example of numerical
results for this case.

20
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Slow Dispersion from a Circular Orbit

Let us now consider the specific case of dispersion of particles from an object in a
circular orbit in an axially symmetric gravitational field. We introduce cylindrical coordi-
nates Z, 0, and z such that the plane z = 0 is a plane of symmetry of the gravitational
field. The gravitational potential then depends only on ( and z:

0 = 0 (Z, Z) .

Such a potential admits circular orbits in the plane z = 0. A circular orbit of radius R is
described parametrically by

D = R,

0 = + 2t,

and

z = 0,

where R QŽ2 = a /a(R, 0). Consider departures g, i, r from this reference orbit such
that

(Z = R + A,

0 = do + Lt + n/R,

(37a)

(37b)

and

z = r. (37c)

The variational equations for a, iq, and t are generated from the Hamiltonian

X = 1 (P2 +p2 +P2) - 2 E4P2 + 1 (n 22 + K 2 t 2 ), (38)

where the momenta are

(39a)

P2 = 17+ 2S2,

P3 = t

(39b)

(39c)

and where

21
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n2 = 32 - aa2 I (R, 0)

K2 = a 02 (R, O) .
az2

(40a)

(40b)

We will assume that n2 (the square of the epicyclic frequency) and K2 are positive, so
that 1 is stable to small departures from circular orbits.

If we introduce the notation

T = nt,

T= Kt,

a = 2/n,

s = sin r,

C = Cos T,

s' = sin T',

and

c = Cos r,

then the fundamental matrices can be written

/ c OO\
U = -as 1 0 

O O c'/

_-a(c -1)

V = 1 a(c -1) (10- ) 2) + a2S

0 0

-s O O 

w= ° ° ° I

O O -Ks'

ns I)

(41a)

(41b)

(41c)

and

as 0

10
O C'

22
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To complete the solution, we require

D =-KdetV_ = (1-a2 )sT + 2a2 (1-c) (42)
S

and

/D [(1 -a2)r + a2s] -- a(,-c) 0

W Y Vf1U =U -Da(1 - c) -S 0 . (43)
D D

K
0 0

\

The explicit equation for the spatial density is then

P t) = '[(1 2) + 22(1 - c)]G(D- {[(1 - a2 )r + a2 s] t

- a(- )1} D [aI - ~ 7] ) (44)

for any initial momentum distribution function G(p1 , P2, P3).

To illustrate these results, a distribution function

-0012 2)+2 )2
G(p) = e[(Pl O2l)+(000 3O)2+Pa 11(0.003) H(O.007 -Vp/)+ pH-H(0.007 -p3)

with the Keplerian parameters n = K = 1 and a = 2 was used to evaluate the spatial den-
sity function (44) at various times. The results are shown in Figs. Ila through Ilf as a
symbolic representation of the relative density. To produce two-dimensional figures, the
density has been calculated in the reference orbit plane and in the principal plane of the
cloud, which is normal to the reference orbit plane. The position of the reference body
is always at the origin of the coordinate systems. The center of mass of the cloud ex-
ecutes an epicycle about the reference orbit and the cloud elongates and rotates to align
itself with the direction of motion as time increases. There is a boundary p = 0 for each
figure because of the Heaviside function H(a - x) in the distribution function. The refer-
ence orbit plane is always a plane of symmetry for the cloud. The section by the refer-
ence plane (intersection of the cloud and the reference plane) collapses to a line once per
revolution, and the section by the plane normal to the reference plane collapses to a line
twice per revolution. Knowing that the salient features of the evolution of the cloud are
its rotation and elongation, we may undertake the calculation of these quantities from
the spatial density function (44). We will restrict our attention in this calculation to an
ellipsoidal momentum distribution function G typified by the illustrative example
(Fig. 11).

23
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Fig. lla-Symbolic representation of the relative spatial density at T = rT/4 on (top) the reference orbit
plane and (bottom) a plane normal to the reference orbit plane containing two principle axes.
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Fig. llb-Relative spatial density at T = 7r/2, on a scale 1/2 that of Fig. lla
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Fig. Ilc-Relative spatial density at r = 3fT/4, on a scale 1/4 that of Fig. lla
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Fig. lid-Relative spatial density at r = 7r, on a scale 1/4 that of Fig. 1 la
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*... X -~*@Xs X XX W'..8X@ 
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Fig. lie-Relative spatial density atr = 61T/4, on a scale 1/6 that of Fig. lla
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Fig. hlf-Relative spatial density at r = 2ir, on a scale 1/10 that of Fig. Ila
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Let

G(p) = e (P,)A(P-P) (45)

where A is the diagonal matrix

A = diag {1/a2, 1/a2, l/c}

It follows immediately from (44) and (20) that the spatial density function is also
ellipsoidal and that the maximum density (which is also the mean density in this case)
occurs on the solution curve of (38) corresponding to the initial conditions q = 0 and
p = j, that is, the epicycle corresponding to the mean of the initial momenta. This con-
clusion could also be reached by examining the first moments of p(q, t) with respect to

q, 71, and t.

The out-of-plane structure of the ensemble, namely, its dependence on ¢, is inde-
pendent of its in-plane structure. An ensemble with initial momentum distribution (45)
is always oriented parallel to the orbit plane. A skewness relative to the orbit plane can-
not develop unless it is present initially. The dispersion in the t direction is cx3s'/K, which
shows that the ensemble collapses to the orbit plane when s' = 0 or t = nir/K, n = 1, 2 ....

The orientation and elongation of the cloud may be determined by calculating the
second moments of p about the mean with respect to the coordinates ¢ and 77. It is
easier in this case however to diagonalize the quadratic form which appears in the expo-
nent of equation (45). We find that the angle w between the major axis of the ensemble
and the r axis satisfies

tan 2w = 2a(X - c)(s - [(1 - a2 )r + a2 s] (U2 /Ul1 )2) (46
02(l -C)2 - 52 + {[( -a2)T+02S] 2 _a 2(J -C) 2}(a 2 / 1 )2 (46

The major and minor axes a and b of the ellipse are found to satisfy

/b 2 h1 ([a 2 (1 - C)2 + s2 ] [1 - a2 )r + 02S] 2 + a2 (1 h C)2
or -+

h/a 2 2 U2 2

2 \ °ff2 (t21 (47)

2 fa(l - c)s [(1 - a2 )r + a2S] a(h - c)

sin 2w la2 J

The orientation angle w is seen to be completely determined by the ratio U2/a1 or,
equivalently, by the eccentricity of the initial momentum ellipsoid, but determining the
major and minor axes requires that the separate major and minor axes a, aqd'cv2 of the
initial momentum ellipsoid be determined. A family of curves of w versus r parameter-
ized by (a 2 /al )2 is shown in Fig. 12a. The semimajor and semiminor axes versus time
for the illustrative example are shown in Fig. 12b. Also shown in Fig. 12a (open circles)
are orientation angles observed for the initial dispersion of the breakup of the artificial
satellite Cosmos 699. Agreement is good between the observed values and the curve cal-
culated for a, = a2. Figure 12b shows that the ensemble elongates rapidly. This has an
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I 2 3 4 5 6 7 8 9 10 I1 12

-100

- 0.01

Fig. 12a-Orientation angle w of the particle ensemble as a function
of T and parameterized by (U2 /al )2, obtained using equation (46)

5 6
r*

Fig. 12b-Semimajor and semiminor axes a and b, obtained using
equation (47), and flattening f of the particle ensemble
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important observational consequence. Any process of orbit determination has intrinsic un-
certainties because of observation errors. The uncertainties can completely distort the
structure near the point of disintegration but will be relatively inconsequential once the
major axis of the ellipsoid has exceeded the uncertainties.

The Inverse Problem

We have seen that the extent and orientation of the ensemble can be calculated
given the initial momentum distribution. Now we consider the inverse problem of de-
termining the initial time and velocity distribution from knowledge of the ensemble
structure at a later time. We give explicit results for the case of an elliposidal distribu-
tion of initial momenta and will indicate a numerical procedure for treating more general
cases.

We consider the quadratic form Q which appears in the exponent of the distribution
function G in equation (44) in the elliposidal case:

Q = I 2 + 2Ii1tq + 10277

where

{n2 [(1 - 2)r + a2s] 2 2(1 -c)2 (48a)
20 D2 lU2l of2 7(4a

n2 [(1 - a2 )T + a2s] S21
Ill =-l- a12 + ya(1 - c), (48b)

and

n2 a2(1 -C)2 S2
I02 [u2(iL c)2 + s] . (48c)

The shape and orientation of the ellipsoid at time t determines 120, Ill, and 102, and
these quantities are regarded as known. The parameters a1 and a 2 determine the initial
distribution and, along with t, are unknown. Thus equation (48) supply three equations
in three unknowns. The equations are linear in 1/a0 and 1/ad, so these quantities are
easily eliminated. The result is the following transcendental equation for r (or t):

I20 Ill I02

det [(I - 2)T + 02 s] 2 -a(l - c)[(l - 02)r + a2s] a2 -C)2 ) 0 (49)

a2 (l- c)2 a(l - c)s S2
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The roots of equation (49) are not simple, and further information is necessary to distin-
guish the correct one. This may be accomplished in one of two ways. First, equation
(49) may be solved twice, for values of Iij observed at two times separated by a known
interval A T. The pair of roots differing by AT then determine the initial time r. Second,
the values of aland a2 can be calculated from

([(1 - a2 )r + a2s] 2 a2(1- c)2) (1/oU2)

a2 (I - c)2 S2 1/U2

(50)
n2 I2-0S2 _ G2(1 - c) 2 I0 2

D2 _G2(j _ c)2 I20 + [(h - a2 )T + a2s] 2I02

at two times separated by a known A T. The pair of roots having the same associated
values of A T then give the correct initial time. In either case the values of Ij must be
known at two different times in order to determine a unique solution.

The computational procedure is illustrated in Fig. 13 for the case a = 2 (Keplerian
motion) and a, = U2 = 1. The two curves were calculated with 120 = 0.428 and 0.394,
Ill = 0.322 and 0.259, 102 = 0.512 and 0.256, and AT = 0.5. The origin of the lower
curve is shifted so that the proper root is the one which aligns the intersections of the
upper and the lower curves. Table 1 displays the associated values of 1/U2 and 1/a2 for
the first two roots.

Table 1-Roots of Equation (49)

t j h/os2 [ 1/U2

0.93 0.16 0.59
1.50 1.00 1.00
0.76 + AT 0.12 0.77
1.50 + AT 1.00 1.00

The computational procedure which we have illustrated for the ellipsoidal velocity
distribution leads to the initial time and the initial distribution because it can be described
completely by its first and second moments. In general, higher order moments will be re-
quired to determine the initial distribution and the initial time. For these cases one may
evaluate the integrals

ijk(t) = f riqj 7 Ikp(, Xq, ¢, t) dtdqdt (51)

using equation (36) or equation (44) for p(Q, 77, ¢, t). The right-hand side may be ex-
pressed in terms of the initial moments Iijk(O). This relates the observed moments Iijk(t)
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n / AT+IT tT'+~T2

Fig. 13-Graphical solution of the inverse problem

on one hand to the initial moments Iijk(0) and the time t elasped since initial dispersion
on the other. The details of this procedure are left for future work.

PROBABILITY OF COLLISION

The number of objects in orbit about the earth has increased enough that planners of
manned missions must consider the hazard of collision with debris and/or payloads. A
particularly hazardous situation occurs when objects such as fuel tanks or rocket bodies
disintegrate and temporarily produce regions of anomalously high particle density. In this
subsection, we consider the problem of calculating a probability of collision with a dis-
persing cloud of particles.

Our model of the dynamical system consists of a continuum of particles specified by
a phase-space distribution function and a single reference particle whose trajectory is
known with complete certainty. We desire to know the probability that a particle of the
continuum shall pass within a given distance of the reference particle during a specified
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interval of time. The given distance must be large enough that the hypothesis of zero
uncertainty in the reference orbit is reasonable.

We shall first consider the problem in the abstract. A formal solution consists of a
constructive definition of collision probability. The computation' of this probability is
another problem. In most cases extensive numerical work will be required. However, the
case in which the continuum of particles represents an ensemble which is slowly dispers-
ing from a known parent orbit can be treated semianalytically.

Let the particle continuum be described by a phase-space distribution function
f(q, p, t) as earlier. Let [I denote the phase space. The probability that a particle will
be found in a region R at time t is

p(R, t) = f f f(q, p, t) dqdp, (52)
NR

where

N= J f(q, p, t) dq dp.
11

If p(q, t) is the spatial density function, we can likewise define the probability that a
particle will be found in a subset 9 of configuration space as

PQ(9,t) = M f p(q, t) dq (53)

where

M =f p(q, t) dq

and the integral is taken over all admissible configurations. The quantity pQ can be
regarded as a local or instantaneous measure of probability of collision but is not suitable
for describing the probability over an extended interval of time. It can be calculated by
numerical quadratures in a straightforward way using expressions for p(q, t) given before.

Formulation of a definition of collision probability over an extended time interval
requires the introduction of some additional notation. Given a subset S C Il, let

Tt S = {(q, p) elf: [Q0 (q, p, t), Po(q, p, t)] eS }, (54)

where Q0 and PO are the propagator functions (equations (13)). Tt specifies the evolu-
tion of a subset of initial conditions in 11. Let qR(t), pR(t) be the position in 1[ of the
reference particle. Let CA(t) = {(q, p): Iq - qR(t)i < A}. CA(t) consists of the

3 5
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continuum particles lying within a distance A of the reference particle at time t, that
is, those particles which "collide" with the reference particle.

We define the probability p(A, t) that a continuum particle will pass within a dis-
tance A of the reference particle in the time interval (0, T) to be

p(A, T) = f-f f(q, pO ) dqdp, (55)

where

'U = U Tt A(t)A
te(O,T)

The subset 'U C Il consists of all initial conditions which lead to a collision in the time
interval (0, T). The idea then is to transfer everything back to the reference time t = 0
before evaluating the probability integral.

If the continuum particles emanate from a common point q* at t = 0, as in the case
of a breakup, an alternate expression can be given. In this case

f(q, p, 0) = 6(q - q*)G(p)

according to equation (18), and the collision probability becomes

p(A,T) = G(p)dp, (56)

where (9 = {p: I Q(q*, p, t) - qR (t) I < A for t e (0, T) } and Q is the propagator func-
tion (equation (13b)). The subset (0 consists of all momenta p for which the initial con-
dition (q*, p) leads to a collision in the interval (0, T).

With regard to numerical calculations, the second formulation, (56), is preferable
whenever it is applicable. In either case however the brunt of the calculation is the
determination of the domain of integration (either 'U or 0).

To proceed as far as possible analytically, we shall consider the case of slow disper-
sion from a reference orbit. The results of the subsection on variational equations are
then applicable. From equation (25) we have

q = VpO; (57)

therefore the inequality

Iq - qR 1< A

is equivalent to
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p0 * (VTVpO) - 2po (VqR) + q < A2 (58)

or

U (VTV)U < A2 (59)

where

U = Po - V 1 qR-

Since det (VTV) = (det VT)(det V) = (det V)2 > 0, equation (59) places Po inside an
ellipsoid with center at V_1 qR. The set (9 is then the union of all these ellipsoids for
t e (0, T). We have been unable to find an analytic expression for this union, so a nu-
merical procedure has been devised to calculate p(A, T). For the Keplerian case a = 2,
and for the case of a planar breakup the following numerical procedure was successful.
The interval (0, T) was subdivided, and at each division point the inequality (58) was
tested at each point of a grid in momentum space using equation (41b). The set is then
approximated by those grid points at which the inequality is satisfied. The integral (55)
is then calculated numerically based on this grid.

In Fig. 14 we show the results of this calculation for two sets of initial conditions.
The ensemble statistics were indentical to the numerical example treated in earlier. This
example has the interesting feature that the reference particle which was initially farther
away from the breakup point (curve (a)) ultimately acquired the higher probability of
collision. The initially closer reference particle (curve (b)) shows a more rapid initial in-
crease in collision probability however. These results illustrate the importance of defining
the probability of collision over a time interval rather than instantaneously.

In statistical problems of this sort it is often useful to calculate ensemble averages of
quantities. As an example of this, we shall calculate the ensemble average of the square
of the distance from the reference particle to members of the continuum. This involves
an integration of the product of the left-hand side of (58) and f(q, p, t) over all momenta.
The result for a two-dimensional Gaussian distribution

ispG(p) = -bl)2 2 -b 2 2

is

L ~(2i + c) Aii + 2cjC2A12

where

Ci= bi - entj(V 1 qR)

(in which ent means entry) and

Aij= entij(V T V)
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Fig. 14-Probability of collision for two sets of initial conditions

An example of numerical values of A/E a measure of "mean" distance to the contin-
uum particles, is shown in Fig. 15.

To obtain these results it has been assumed that the distribution function for the
continuum is known. In reality this will not be the case. To calculate the probability
of collision with an actual breakup, one must first solve the inverse problem discussed
earlier. Once this has been accomplished, the results of this section may be applied.

CONCLUSIONS

The following concluding remarks are in order:

* The dual time-dependent and time-independent analysis described herein appears
to be an effective tool in the determination of the breakup time and place of an orbital
explosion from tracking data on the individual fragments.

* Although the time of breakup may be only approximately determined in some
cases by the time-dependent procedure, the time-independent analysis can be used to
compute the position of the breakup if not the time.

* Breakups with a high-velocity dispersion may be more effectively analyzed than
those with low-velocity dispersions.

* Methods of statistical mechanics may be used effectively to study both the
evolution of the fragment cloud and the deduction of conditions (time, velocity distribu-
tion, etc.) at disintegration. Considerable savings in computer time are possible, because
it is not necessary to calculate large numbers of individual trajectories.
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Fig. 15-Ensemble average of mean distance squared
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